Abstract: In the review we briefly analyze the state-of-art in the theory of flexoelectric phenomena and analyze how significantly the flexoelectric coupling can change the polar order parameter distribution in different ferroics and liquid crystals. The special attention in paid to the appearance of the spatially modulated phases induced by the flexocoupling in condensed and soft matter. Results of theoretical modeling performed in the framework of the Landau-Ginzburg-Devonshire formalism revealed that the general feature, inherent to both ferroics and liquid crystals, is the appearance of the spatially-modulated phases is taking place with increasing of the flexocoupling strength. We’d like to underline that theoretical and experimental study of flexoelectricity and related phenomena in nanosized and bulk ferroics, liquid crystals and related materials are very important for their advanced applications in nanoelectronics, memory devices and liquid crystals displays.

 

Title: Flexoelectricity induced spatially modulated phases in ferroics and liquid crystals

Authors: Anna N. Morozovska, Victoria V. Khist, Maya D. Glinchuk, Christian M. Scherbakov, Maxim V. Silibin, Dmitry V. Karpinsky, Eugene A. Eliseev

DOI: https://doi.org/10.1016/j.molliq.2018.01.052  Journal of Molecular Liquids () 267, 550-559

Preprint deposited in the repository: https://arxiv.org/abs/1710.01033