Dear Alexander Abramov,

We are pleased to inform you that your manuscript:

Local Electromechanical Characterization of Pr Doped BiFeO$_3$ Ceramics,
by A.S. Abramov, D.O. Alikin, M.M. Neradovskiy, A.P. Turygin, A.D. Ushakov,
R.O. Rokeah, A.V. Nikitin, D.V. Karpinsky, V.Ya. Shur, A.L. Kholkin

has been accepted for publication in the Proceedings of the International Conference
"Scanning Probe Microscopy" (SPM-2017)
in the special issue of *Ferroelectrics* journal (2018).

Managing Editor of the Taylor&Francis
Kaleigh Sunday

27.11.2017
Local electromechanical characterization of Pr doped BiFeO$_3$ ceramics

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness.

Q1. Au: Please cite Figure 4 in text.

TABLE OF CONTENTS LISTING

The table of contents for the journal will list your paper exactly as it appears below:

Local electromechanical characterization of Pr doped BiFeO$_3$ ceramics
Local electromechanical characterization of Pr doped BiFeO₃ ceramics

School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia; Université Côte d’Azur, CNRS, InPhyNi, Nice, France; Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus; Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal

ARTICLE HISTORY
Received 30 August 2017
Accepted 27 November 2017

KEYWORDS
Bismuth ferrite; lead-free piezoelectric ceramics; electrostatic-free piezoresponse force microscopy

1. Introduction

The discovery of large remnant polarization in bismuth ferrite (BFO) thin films prepared by the pulsed laser deposition has been attracting researchers to study their piezoelectric and electromechanical (EM) properties for various applications in EM devices [1]. The main issue in the application of BFO-based ceramics is reduced phase stability and high electrical conductivity deteriorating the piezoelectric performance [2]. One of the solutions of this problem is the fabrication BFO-based materials at the compositionally driven morphotropic phase boundary (MPB), which could be done, for example, by the substitution with rare earth elements [3–7]. By the analogy, commercial Pb₀.₅Zr₀.₅TiO₃ solid solutions are commonly produced with the composition in the vicinity of MPB, which has been shown to drastically increase the EM response [8,9]. The MPB in BFO is relatively temperature independent and accompanied by the reduction of the elastic moduli and enhancement of piezoelectric response accompanied with simultaneous decrease of the coercive field [3]. The role of MPB is usually discussed in terms of the nanoscale phase coexistence beneficial for the polarization rotation and extension [8,9]. Moreover, doping by rare-earths elements has the potential to
stabilize perovskite phase in ceramic materials, decrease the secondary phases impurities and, as a consequence, reduce the leakage current [2,10]. The coexistence of structural phases is apparently accompanied by a decrease in the elastic moduli and, therefore, leads to improvement of the respective piezoelectric properties [11,12].

BFO ceramics doped by Pr (BPFO) have MPB in the range of doping degree \(x = 0.125 - 0.16\). BPFO with Pr content up to \(x = 0.12\) were obtained in a polar rhombohedral \(R3c\) phase. The rhombohedral structure of BPFO for \(x = 0.12\) is stable at room temperature and no changes in X-ray diffraction patterns were detected after 2-month shelf time, while ceramics with \(x = 0.125\) exhibit an isothermal structural transformation at room temperature: approximately 10% of initial rhombohedral phase gradually transforms into an anti-polar (\(Pbam\) or \(Pnam\)) one after 1-month shelf time [11,12]. The structure of the sample at \(x = 0.14\) has been refined in multi-phase state (polar and anti-polar states coexist). Ceramics with \(x \geq 16\%\) Pr were found to belong to a stable anti-polar phase [11,12]. Doping of BFO by Pr releases magnetization caused by the weak ferromagnetic state: small values of spontaneous magnetization exist at room temperature [13,14]. It was supposed that structural defects and/or local variations in the chemical composition could be a source of such behavior [15]. Spontaneous magnetization, notable piezoelectric coefficient, and dielectric permittivity make this composition perspective for the applications in magnetoelectric devices, too [16–20].

Due to the presence of various defects in the material, polarization hysteresis and piezoelectric measurements are typically supplemented with the big contribution of the leakage current. Only a few studies have been conducted and provided unambiguous data on the macroscopic EM performance and switching behavior [2]. Some authors used the values of piezoelectric coefficients obtained by local methods, such as piezoresponse force microscopy (PFM), in order to evaluate EM activity in BFO. Piezoresponse was measured either in arbitrary units or in cantilever deflection [12]. However, these methods are ambiguous because of the strong coupling of the inherent piezoelectric response with cantilever dynamics and electrostatic cantilever-surface interaction [21].

In this contribution, we focus on the comprehensive characterization of the piezoelectric response in BPFO using macroscopic laser interferometry and scanning probe microscopy (SPM) method realized in single frequency and multi-frequency PFM modes. We found significantly higher values of the effective \(d_{33}\) coefficient in the local studies, which we attributed to incomplete polarization of the ceramics due to the leakage current. We used a novel approach consisting of the additional electrostatic force compensation by the application DC bias voltage.

2. Experimental details

The investigated samples of BPFO ceramics with molar praseodymium concentration 12.5, 14, and 15% were produced using the two-stage solid phase synthesis [22]. The initial high purity oxides were taken in the stoichiometric ratio and thoroughly mixed for about 30 min in a planetary mill RETSCH PM-100 using high purity isopropyl alcohol as a medium. The synthesis temperature increased from 950 to 1050°C with increasing praseodymium content; the samples were quenched from the synthesis temperature down to room temperature. X-ray diffraction (XRD) measurements were made on Rigaku D/MAX-B diffractometer using Cu-K\(\alpha\) radiation. The XRD data were processed by the Rietveld method using the FullProf software.
Samples surface was rigorously polished by means of diamond paste with decreasing powder size from 6 to 0.25 \(\mu\)m. Final polishing was done with colloidal silica (SF1 Polishing Suspension, Logitech, United Kingdom).

For the macroscopic studies, ceramics were poled by the application of 2 kV/mm external electric field pulses of trapezium shape with duration 15 minutes, ramp and fall about 600 V/mm per min. It is important to note that application of electric field every time was accompanied by the leakage current in the nA range, so the real applied field could be different from the calculated based on nominal voltage applied.

Macroscopic measurements of the electromechanical response were done using precise single-beam laser Michelson interferometer with signal discrimination by the selective amplifier (lock-in) [23]. Solid state diode laser LCM-S-111-20-NP25 (Lasercompact, Russia) with wavelength 532 nm and power 20 mW and lock-in amplifier SR-830 (Stanford Research, USA) were used as key components of the interferometer. PID-feedback loop for thermal drift stabilization was based on the piezo actuator P-841.01 and piezo controller E-709.SRG (Physik Instruments, Germany). Measurements were done in the frequency range of 1–100 kHz with 50 V driving amplitude. Piezoelectric coefficients were evaluated from the AC voltage sweep (1–50 V) at the flat regions of frequency dependencies as a linear coupling between displacement and applied voltage.

PFM measurements were realized with NanoLaboratory NTEGRA Aura (NT-MDT, Russia) by the MikroMasch NSC18/Pt probes with 30 nm tip radius, 75 kHz free resonance frequency and 2.8 N/m spring constant. Single- and multi-frequency regimes were exploited.

2.1. Single frequency out-of-resonance PFM (SF-PFM)

SF-PFM measurements were performed using microscope internal electronics. 3 V, 21 kHz driving amplitude was applied to the SPM tip. Frequency of scanning was chosen far from the contact resonance frequency (400–500 kHz) in order to exclude all the cantilever dynamics inputs.

2.2. Band excitation multi-frequency PFM (BE-PFM)

BE-PFM measurements were performed by the external electronics NI PXIe-1071 (National instruments, USA) with the built-in waveform generator (NI PXI-5421) and multifunction input-output module (NI PXI-6115). The sampling frequency of data acquisition and signal generation was 10 MS/s. The probing of contact resonance cantilever frequency (400–500 kHz) was done using 90 kHz-width window excitation with about 30 discrete frequency bins and 200–400 ms exposure time per point. The voltage amplitude per frequency bin was 2–5 V. More detailed description of the theoretical approach for the multi-frequency discrete bin band excitation method could be found in Ref. [24].

In order to nullify the parasitic inputs of the probe-surface electrostatic interaction, we used DC compensation of the surface potential [25]. Unfortunately, the SF-PFM noise level in the BPFO was found too big to reveal explicit dependence of the piezoresponse on the applied DC voltage. Only multi-frequency on-resonance regimes with x100-200 resonance amplification allowed implementing electrostatic force correction.
algorithm [25]. We typically used 10 V DC bias to reveal the minima of the piezoresponse and exclude polarization reversal (Fig. 5). The reversibility of all the processes was proved by the two-pass approach, where the EM signal was measured under the DC voltage sweep.

Tip-induced polarization reversal was done using external NI-6251 multifunction Data Acquisition board (National Instruments, USA) and high-voltage amplifier Trek-677B (TREK Inc., USA). The commercial probes ScanSens HA_FM/W2C Etalon with conductive W2C coating, 35 nm radius of curvature, 114 kHz resonance frequency, and 6 N/m spring constant. Local switching was done by writing the poling maps in a number of grains with spontaneous polarization preferably out-of-plane oriented (maximal piezoresponse). The effective radius of the created domains was calculated from the switched area in circular approximation.

All measurements were performed in dry atmosphere (relative humidity 5–15%) provided by constant dry airflow through the microscope chamber.

3. Results and discussion

3.1. Macroscopic electromechanical response

The macroscopic poling of the samples was accompanied by the high leakage current, which is a sign that actual poling voltage could be significantly smaller than the applied one. This could result in only partial reorientation of spontaneous polarization in ceramics and smaller piezoelectric response. For example, Sm doped BFO had the effective macroscopic piezoresponse increasing with the applied voltage without any saturation [26]. It is interesting to note that we found a general trend of piezoresponse increase with decreasing frequency. This effect was observed earlier and attributed to non-linear Maxwell-Wagner relaxation [27,28] or hopping conductivity via the defects [29]. In our case, the frequency range with detected amplification of the response was about 20–30 kHz. This is quite important observation, because, typically, PFM out-of-resonance signal is believed to be frequently independent in a frequency range far from the contact resonance frequency (300–900 kHz for the stiff cantilevers – 3–15 N/m). This was not the case of our measurements and could be a source of additional error for the values of the effective piezoelectric coefficients. The approximate values of the effective d_{33} for all three samples were found to

![Figure 1](image.png)

Figure 1. Frequency dependencies of the macroscopic EM response in PBFO measured by the laser interferometry. $U_{ac} = 50$ V. The effective d_{33} value for the 70 kHz: 0.32 pm/V for BPFO 12.5%, 0.42 pm/V for BPFO 14%, 0.9 pm/V for BPFO 15%.
be quite small: about 0.5–1 pm/V (Fig. 1). Significant frequency dependence of the response does not allow comparing reliably the values of the piezoelectric coefficients. We supposed that this ambiguity could be due to the extensive leakage current impeding poling and contributing to EM response.

3.2. Domain structure and phase composition

The grain size in all three compositions of BPFO was about 8–12 μm. PFM images from BPFO ceramics demonstrated coexistence of the two phases: piezoelectrically active, attributed to polar R3C phase (R-phase), and piezoelectrically inactive, attributed to the anti-polar Pbam or Pnam phase (O-phase) [11,12]. R-phase revealed a mixture of lamellar domains with non-180° domain walls and watermark areas exhibiting irregular shapes and separated by 180° walls (Fig. 2). PFM revealed fraction of the anti-polar phase increasing with doping (Fig. 2), which is in line with XRD data (Fig. 3). The reduction of the polar phase size with doping is responsible for the size effect, because the lamellar/watermark ratio decreased.

The PFM signal distribution made by SF-PFM and BE-PFM in BPFO ceramics was quite similar. The only difference was a big variability of the amplitude and phase in anti-polar phase, where band excitation usually fitted data in a wrong way due to the absence of the explicit contact resonance. Piezoresponse distribution was found to have a discrete set of the measured signals (contrasts): about 5–6 due to piezoresponse and one related to the averaged noise level. These contrasts were caused by the small variations of the PFM amplitude due to different orientations of spontaneous polarization in a multiaxial grain.

3.3. Evaluation of the local effective d33 piezoelectric coefficient

Obviously, the influence of the leakage current through the different interfaces: domain walls phase and grain boundaries could be excluded completely only using local techniques for the

![Figure 2. SF-PFM and BE-PFM images of the domain structure in BPFO ceramics with different compositions: (a), (b) 12.5%, (c), (d) 14%, (e), (f) 15%. The ruler length is 3 μm equal for all images.](image)
measurements. That is why we used PFM to estimate quantitatively the locally measured d_{33} coefficient within the grains.

Actually, the quantitative measurements of local effective d_{33} are complicated because of stiffness calibration and sensitivity problems [30], cantilever dynamics contribution [31,32], parasitic effects (frequency dependent background) [25,33–35], etc. Nevertheless, several techniques could be used to correct the data and to explain the low values of the macroscopic response.

We realized quantification of the PFM signal by means of the probe sensitivity calibration using quasi-static force distance curves. The amplitude of the piezoelectric response across the scan was represented as a histogram and average effective d_{33} was extracted as a median of the signal distribution (Fig. 3).

Figure 3. XRD spectrum of the BPFO 12.5% ceramics. On inset: evolution of the bands inherent for the R- and O-phases. The estimated fraction R to O phase is: BPFO 12.5% ~100%/0%, BPFO 14% ~15%/85%, BPFO 15% ~5%/95%.

Figure 4. (a) SF-PFM (5V AC) and (b) BE-PFM (5V AC per bin) amplitude. (c) SF-PFM and (d) BE-PFM histogram of amplitude distribution across the image. (a) and (c) BPFO 15%; (b) and (d) BPFO 12.5%.
Then, the force distance curve was acquired and cantilever optical sensitivity calibration coefficient was extracted. The effective d_{33} coefficient in pm/V was calculated according to the following formula:

$$d_{33} = \frac{A [pm]}{V_{mod} [V]} = \frac{InvOLS[nm/nA] \times A[nA]}{V_{mod} [V]},$$ \hspace{1cm} (1)

where $InvOLS$ is optical cantilever sensitivity, A_{SP} is the averaged amplitude value, V_{mod} is the value of the modulating voltage applied at scanning.

SF-measurements demonstrated decreasing trend in the piezoelectric performance, which is in line with crystal structure transformation. Nevertheless, the average error of the coefficient determination is quite high (about 30–40%). BE-PFM gave similar values and errors. These could not be explained by the increased sensitivity of the method: BE-PFM has at least 100 times amplification due to measurements at contact resonance frequency. EM signal has more contributions either from cantilever dynamics input, or from additional “electrostatic” response, appeared as result of the local and distributed cantilever-surface interaction [25].

The first contribution, indeed, may have a big influence on the measured data [33]; however, we found that the used cantilevers were quite stiff and provided the contact stiffness enough to make the data reliable [33].

The second contribution is more important for our case. The physical reason of “electrostatic contribution” is a cantilever-surface capacitance appearing as a result of non-local Coulomb forces or tip interaction with injected charge. Generally, stiffer cantilevers could be used to remove the parasitic inputs from electrostatic ones; however, this approach has several disadvantages:

- quite big stiffness is necessary to make electrostatic response negligible [36];
- stiff cantilever can modify the surface mechanically or induce some electric field through electromechanical coupling [37];
- the contact resonance frequency shifts with cantilever stiffness and for stiff enough cantilever it could be in MHz range, where optical registration system becomes less sensitive.

That is why we expanded the so-called “electrostatic-free” PFM approach suggested by Kim [25] to the quantification of the response in the ferroelectric systems with non-trivial domain structure and phase assemblages.

3.4. Influence of the electrostatic correction on the effective d_{33} coefficients

“Electrostatic-free” PFM implies using additional DC bias to suppress surface potential and, therefore, minimize electrostatic responses (see Eq. (1)) in a way, how it is usually done in Kelvin probe force microscopy (KPFM). In contrast to the experiments performed by Kim, we had more complicated problem due to inhomogeneity of the system and, consequently, distribution of the surface potential across the surface [25]. That is why we could not use the same applied bias for all scans and it had to be selected carefully for each scan point. We realized the other approach similar to the switching spectroscopy PFM widely used in PFM community [38,39]. In the frame of this approach, in each point of the scan we sweep DC offset to obtained complete curve of the EM signal dependence on the DC voltage. It must be noted that the applied DC bias was smaller than the threshold voltage of the local
Figure 5. Local switching in PBFO ceramics with different composition: dependence of the effective domain radius on the (a) amplitude of voltage pulse and (b) duration of voltage pulse.

Figure 6. "Electrostatic-free" BE-PFM. (a) Typical PFM spectroscopy curve: PFM amplitude and phase vs DC bias, (b) PFM amplitude vs DC bias spectroscopy curve variation across the surface for different BPFO compositions: open symbols – curves with surface potential close to zero, filled symbols – curves with deviated surface potential.

Figure 7. PFM with correction of electrostatic forces. (a) Topography, (b) surface potential measured by KPFM, (c) SF-PFM piezoresponse, (d) SF-PFM amplitude, (e) surface potential measured by PFM, (f) corrected PFM amplitude within R-phase areas.
polarization reversal: local switching did not reveal any irreversible domain structure change at the voltage smaller than 10 V (Fig. 5). Moreover, before and after scan the domain structure done in BE-PFM did not show any changes under the action of applied DC voltage.

Typical PFM spectroscopy curves measured under the DC sweep represented the V-shape in amplitude with phase inversion in the point with minimum response (Fig. 6a). Such behavior was reported earlier by Kim in lithium niobate single crystals and reliably described electrostatic forces [25]. The only difference with the case of KPFM is that the minimal signal does not lie at the noise level, but has a meaning of the corrected piezoelectric amplitude (piezoelectric amplitude without input of the electrostatic forces, see the first term in Eq. (1)).

Mapping the PFM spectroscopy curves across the surface demonstrated various experimental situations: the minima close to the 0 V bias — no “electrostatic” input and minima shifted to the positive of negative voltage — “electrostatic” input. For the quantification of the data, we averaged the minima across the number of the surface scans and found considerable decrease of the effective d_{33} values. The corrected values of the effective d_{33} were found to be quite similar in BPFO 14% and BFO 15%, while the BFO 12.5% exhibited in R-phase had higher d_{33} values, which showed higher Pr doping to trend negatively on the piezoelectric coefficient.

We analyzed also surface distribution of the applied DC offset correspondent to minimum of PFM amplitude and corrected PFM amplitude (Fig. 7). The DC offset applied to sample had the same meaning as in the contact KPFM discussed earlier in literature [40]. This was proved by the similarity of surface potential data obtained by KPFM technique (Fig. 7b). The only difference was an enhancement of resolution and signal level. The contrast obtained in the KPFM data had a correlation with the domain structure and we addressed it to screening charges [41]. The corrected PFM amplitude revealed also some variation correlated with domains and domain wall positions, but had small deviation, possibly due to negligible variation of the effective d_{33} coefficient.

4. Conclusion

We conducted a comprehensive study of the electromechanical performance in BPFO ceramics of different compositions around MPB by the laser interferometry and piezoresponse force microscopy. The macroscopic data demonstrated quite small (and similar) values of the electromechanical response in all ceramics, while PFM revealed essential difference depending on Pr content. Single frequency and multi-frequency regimes of PFM were compared and it was shown that the most reliable data were obtained in multi-frequency on-resonance measurements with additional application of DC bias compensating the cantilever-surface electrostatic interaction. The variation of the surface potential due to

<table>
<thead>
<tr>
<th>Method</th>
<th>Effective d_{33}, pm/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF-PFM</td>
<td>5.2 ± 0.5</td>
</tr>
<tr>
<td>BE-PFM</td>
<td>4.4 ± 0.7</td>
</tr>
<tr>
<td>Band Excitation with compensation</td>
<td>4.1 ± 0.1</td>
</tr>
<tr>
<td>BPFO 12.5%</td>
<td>3.7 ± 0.6</td>
</tr>
<tr>
<td>BPFO 14%</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td>BPFO 15%</td>
<td>3.4 ± 0.7</td>
</tr>
</tbody>
</table>
electric field produced by screening charges provided considerably higher electromechanical response. Developed approach of the “electrostatic-free” PFM allowed distinguishing the piezoelectric response and Coulomb tip-surface interaction. The surface potential and effective d_{33} distribution across the surface were visualized simultaneously. Proposed approach is valuable for the characterization of the various inhomogeneous ferroelectric materials: multiaxial and multi-domain single crystals, ceramics, and thin films.

Acknowledgment

The equipment of the Ural Center for Shared Use “Modern nanotechnology” was used. The reported study was funded by RFBR (grant No. 17-52-04074) and BRFFR (grant No. F17RM-036). This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 778070.

Funding

European Union’s Horizon 2020 research and innovation program, Marie Skłodowska-Curie grant agreement No 778070 CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679, UID/CTM/50011/2013 RFBR, 17-52-04074

References

