This section collects all the official material created during the TransFerrr project as well as the publications that disseminate the results achieved by the project. If you are interested in communicating about TransFerr project get in contact with our dissemination manager Katarzyna Lenczewska (k.lenczewska@intibs.pl).
Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate – bismuth ferrite (BaTiO3 – BiFeO3) solid solutions – Article 28
Abstract: Single phase barium titanate–bismuth ferrite ((1-x)BaTiO3-(x)BiFeO3, BTO-BFO) solid solutions were prepared using citric acid and ethylene glycol assisted sol-gel synthesis method. Depending on the dopant content the samples are characterized by tetragonal, tetragonal-pseudocubic, pseudocubic and rhombohedral structure as confirmed by Raman spectroscopy and XRD measurements. An increase of the [...]
Nontrivial magnetic field related phenomena in the single-layer graphene on ferroelectric substrate – Article 27
Abstract: The review is focused on our predictions of nontrivial physical phenomena taking place in the nanostructure single-layer graphene on ferroelectric substrate, which are related with magnetic field. In particular we predicted that 180-degree domain walls in a strained ferroelectric film can induce p-n junctions in a graphene channel and lead to [...]
Gate-Voltage Control of Quantum Yield in Monolayer Transition-Metal Dichalcogenide – Article 26
Abstract: Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers, which reveal remarkable semiconductor properties, are the subject of active experimental research. It should be noted that, unlike bulk TMDs, which are indirect-band semiconductors, 2D TMD monolayers have the extreme points of the conduction and valence bands at the same K and K′ [...]
Structural Properties of BiFeO3 and Bi0,9La0,1FeO3 Powders Synthesized by Sol-Gel Process – Article 25
Abstract: The present work aims to design and study novel functional materials with multiferroic properties required in electric applications, such as magnetic and magnetoresistive sensors, actuators, microwave electronic devices, phase shifters, mechanical actuators etc. Complex oxides BiFeO3 and Bi0,9La0,1FeO3 for analysis of its structural properties were synthesized as powders by sol-gel method. [...]
Possible Electrochemical Origin of Ferroelectricity in HfO2 Thin Films – Article 24
Abstract: Recent observations of unusual ferroelectricity in thin films of HfO2 and related materials has attracted broad interest to the materials and led to the emergence of a number of competing models for observed behaviors. Here we develop the analytical description for a possible electrochemical mechanism of observed ferroelectric-like behaviors, namely [...]
Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles – Article 23
Abstract: Using Landau-Ginzburg-Devonshire theory and effective medium approximation, we analytically calculate typical dependences of the pyroelectric and electrocaloric coefficients on external electric field, temperature, and radius of spherical single-domain ferroelectric nanoparticles. The considered physical model corresponds to the nanocomposite with a small fraction of ferroelectric nanoparticles. Within the framework of [...]
Mapping gradient-driven morphological phase transition at the conductive domain walls of strained multiferroic films – Article 22
Abstract: The coupling between antiferrodistortion (AFD) and ferroelectric (FE) polarization, universal for all tilted perovskite multiferroics, is known to strongly correlate with domain wall functionalities in the materials. The intrinsic mechanisms of domain wall phenomena, especially AFD-FE coupling-induced phenomena at the domain walls, have continued to intrigue the scientific and [...]
Novel synthetic approach to the preparation of single-phase BixLa1−xMnO3+δ solid solutions – Article 21
Abstract: In this study, the BixLa1−xMnO3+δ solid solutions (x from 0 to 0.65) were synthesized using sol–gel combustion method with citric acid as a fuel and complexing agent. It was shown that changes in chemical composition of the materials lead to the evolution of crystal structure, morphology, and magnetic properties. The thermal [...]
Ferromagnetic-like behavior of Bi0.9La0.1FeO3–KBr nanocomposites – Article 20
Abstract: We studied magnetostatic response of the Bi0.9La0.1FeO3– KBr composites (BLFO-KBr) consisting of nanosized (≈100 nm) ferrite Bi0.9La0.1FeO3 (BLFO) conjugated with fine grinded ionic conducting KBr. When the fraction of KBr is rather small (less than 15 wt%) the magnetic response of the composite is very weak and similar to that observed for [...]
Indentation induced local polarization reversal in La doped BiFeO3 ceramics – Article 19
Abstract: Stress-induced local polarization reversal was studied in La doped BiFeO3 ceramics under the action of Berkovich-type prism indentation. Piezoresponse force microscopy was used for detailed study of domain structure before and after local polarization reversal. Two mechanisms of domain formation under the action of the mechanical loading were revealed: (1) [...]
Building Free Energy Functional from Atomically-Resolved Imaging: Atomic Scale Phenomena in La-doped BiFeO3 – Article 18
Abstract: Scanning transmission electron microscopy (STEM) has enabled mapping of atomic structures of solids with sub-picometer precision, providing insight to the physics of ferroic phenomena and chemical expansion. However, only a subset of information is available, due to projective nature of imaging in the beam direction. Correspondingly, the analysis often [...]
A-site ordered state in manganites with perovskite-like structure based on the optimally doped compounds Ln0.70Ba0.30MnO3 (Ln = Pr, Nd) – Article 17
Abstract: In this paper, we report on the crystal structure and magnetic properties of the nanostructured Ba-ordered phases of rare-earth manganites obtained from the optimally doped solid solutions Ln0.70Ba0.30MnO3 (Ln = Pr, Nd). The materials were studied by X- ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and SQUID- magnetometry techniques. [...]
Size effect of soft phonon dispersion in nanosized ferroics – Article 16
Abstract: Using Landau-Ginsburg-Devonshire theory, we derive and analyze analytical expressions for the frequency dispersion of soft phonon modes in nanosized ferroics and perform numerical calculations for a thin SrTiO3 film. We revealed the pronounced “true” size effect in the dependence of soft phonon spatial dispersion on the film thickness and predict that [...]
Intrinsic structural instabilities of domain walls driven by gradient coupling: Meandering antiferrodistortive-ferroelectric domain walls in BiFeO3 – Article 15
Abstract: Using the Landau-Ginzburg-Devonshire approach, we predict the intrinsic instability of the ferroelectric-ferroelastic domain walls in the multiferroic BiFeO3 emerging from the interplay between the gradient terms of the antiferrodistortive and ferroelectric order parameters at the walls. These instabilities are the interface analog of the structural instabilities in the vicinity of phase [...]
Optical, Dielectric and Magnetic Properties of La1−xNdxFeO3 Powders and Ceramics – Article 14
Abstract: Nanocrystalline La1−xNdxFeO3 powders with different concentrations of Nd3+ have been synthesized using a modified Pechini method. Their structures were studied by X-ray powder diffraction (XRD). Furthermore, La1−xNdxFeO3 nanoceramics were prepared using a high pressure sintering technique. The luminescence spectra of the powders were investigated as a function of concentration of active dopant [...]
Integer quantum Hall effect in graphene channel with p-n junction at domain wall in a strained ferroelectric film – Article 13
Abstract: We revealed that 180° domain walls in a strained ferroelectric film can induce p-n junctions in a graphene channel and lead to the nontrivial temperature and gate voltage dependences of the perpendicular modes of the integer quantum Hall effect (IQHE). In particular, the number of perpendicular modes v⊥, corresponding to the [...]
Anomalies of phase diagrams and physical properties of antiferrodistortive perovskite oxides – Article 12
Abstract: The influence of rotomagnetic (RM), rotoelectric (RE) and magnetoelectric (ME) coupling on phase diagram and properties of antiferrodistortive (AFD) perovskite oxides was reviewed. The main examples we consider in the review are typical AFD perovskites, such as incipient ferroelectrics EuTiO3, SrTiO3, EuxSr1-xTiO3, multiferroic BiFeO3 and Bi1-xRxFeO3 (x = La, Nd). The strong [...]
Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles – Article 11
Abstract: Analytical description of domain structure morphology and phase diagrams of ferroelectric nanoparticles is developed in the framework of Landau-Ginzburg-Devonshire approach. To model realistic conditions of incomplete screening of spontaneous polarization at the particle surface, it was considered covered by an ultra-thin layer of screening charge with effective screening length. The [...]
Temperature behavior of graphene conductance induced by piezoelectric effect in a ferroelectric substrate – Article 10
Abstract: Graphene on a ferroelectric can be a promising candidate to create advanced field effect transistors, modulators and electrical transducers. Recently we have shown that alternating “up” and “down” piezoelectric displacement of the ferroelectric domain surfaces can lead to the increase of graphene channel conductance at room temperature because of [...]
Synthesis of BiFeO3-Powders by Sol-Gel Process – Article 9
Abstract: The present work aims to design and study novel functional materials with multiferroic properties required in electric applications, such as magnetic and magnetoresistive sensors, actuators, microwave electronic devices, phase shifters, mechanical actuators etc. Complex oxides BiFeO3 for analysis of its magnetic properties were synthesized by sol-gel method as powders. The [...]
Latest publication
